
CS103 Handout 26
Fall 2018 October 19, 2018

Problem Set 4

This fourth problem set explores set cardinality and graph theory. It serves as tour of the infinite
(through set theory) and the finite (through graphs and their properties) and will give you a better
sense for how discrete mathematical structures connect across these domains. Plus, you’ll get to see
some pretty pictures and learn about why all this matters in the first place. ☺

Some of the questions on this problem set will assume you’ve read the online Guide to Cantor’s The-
orem, which goes into more detail about the mechanics of the proof of Cantor’s theorem as well as
some auxiliary definitions.

Good luck, and have fun!

Due Friday, October 26th at 2:30PM.
There is no checkpoint problem.

2 / 9

Problem One: Cartesian Products and Set Cardinalities
If A and B are sets, the Cartesian product of A and B, denoted A × B, is the set

{ (x, y) | x ∈ A ∧ y ∈ B }.

Intuitively, A × B is the set of all ordered pairs you can make by taking one element from A and one ele-
ment from B, in that order. For example, the set {1, 2} × {u, v, w} is

{ (1, u), (1, v), (1, w), (2, u), (2, v), (2, w) }.

For the purposes of this problem, let’s have ★ and ☺ denote two arbitrary objects where ★ ≠ ☺. Over the
course of this problem, we’re going to ask you to prove that |ℕ × {★, ☺}| = |ℕ|.

i. Draw a picture showing a way to pair off the elements of ℕ × {★, ☺} with the elements of ℕ so
that no elements of either set are uncovered or paired with multiple elements.

You might want to draw some pictures of the set ℕ × {★, ☺} so that you can get a better visual intuition.
ii. Based on the picture you came up with in part (i), define a bijection f : ℕ × {★, ☺} → ℕ. The in-

puts to this function will be elements of ℕ × {★, ☺}, so you can define your function by writing

f(n, x) = ________________________

where n ∈ ℕ and x ∈ {★, ☺}.

In defining this function, you cannot assume ★ or ☺ are numbers, since they’re arbitrary values out of your
control. See if you can find a way to define this function that doesn’t treat ★ and ☺ algebraically.
iii. Prove that the function you came up with in part (ii) is a bijection.

The result you’ve proved here essentially shows that 2ℵ₀ = ℵ₀. Isn’t infinity weird?

Problem Two: Understanding Diagonalization
Proofs by diagonalization are tricky and rely on nuanced arguments. In this problem, we'll ask you to re-
view the formal proof of Cantor’s theorem to help you better understand how it works.

(Please read the Guide to Cantor's Theorem before attempting this problem.)

i. Consider the function f : ℕ → ℘(ℕ) defined as f(n) = Ø. Trace through our formal proof of Can-
tor's theorem with this choice of f in mind. In the middle of the argument, the proof defines some
set D in terms of f. Given that f(n) = Ø, what is that set D? Provide your answer without using
set-builder notation. Is it clear why f(n) ≠ D for any n ∈ ℕ?

Make sure you can determine what the set D is both by using the visual intuition behind Cantor’s theorem
and by symbolically manipulating the formal definition of D given in the proof.
ii. Let f be the function from part (i). Find a set S ⊆ ℕ such that S ≠ D, but f(n) ≠ S for any n ∈ ℕ.

Justify your answer. This shows that while the diagonalization proof will always find some set D
that isn't covered by f, it won't find every set with this property.

iii. Repeat part (i) of this problem using the function f : ℕ → ℘(ℕ) defined as

f(n) = { m ∈ ℕ | m ≥ n }

Now what do you get for the set D? Is it clear why f(n) ≠ D for any n ∈ ℕ?

iv. Repeat part (ii) of this problem using the function f from part (iii).

v. Give a function f : ℕ → ℘(ℕ) such that the set D obtained from the proof of Cantor’s theorem is
the set { n ∈ ℕ | n is even }. Briefly justify your answer.

3 / 9

Problem Three: Simplifying Cantor's Theorem?
Below is a purported proof that |S| ≠ |℘(S)| that doesn't use a diagonal argument:

Theorem: If S is a set, then |S| ≠ |℘(S)|.

Proof: Let S be any set and consider the function f : S → ℘(S) defined as f(x) = {x}. To see that
this is a valid function from S to ℘(S), note that for any x ∈ S, we have {x} ⊆ S. Therefore,
{x} ∈ ℘(S) for any x ∈ S, so f is a legal function from S to ℘(S).
Let's now prove that f is injective. Consider any x₁, x₂ ∈ S where f(x1) = f(x₂). We'll prove
that x₁ = x₂. Because f(x₁) = f(x₂), we have {x₁} = {x₂}. Since two sets are equal if and only
if their elements are the same, this means that x₁ = x₂, as required.
However, f is not surjective. Notice that Ø ∈ ℘(S), since Ø ⊆ S for any set S, but that there
is no x such that f(x) = Ø; this is because Ø contains no elements and f(x) always contains
one element. Since f is not surjective, it is not a bijection. Thus |S| ≠ |℘(S)|. ■

Unfortunately, this argument is incorrect. What's wrong with this proof? Justify your answer by pointing
to a specific incorrect claim that’s made here and explaining why it’s incorrect.

Problem Four: Paradoxical Sets
What happens if we take everything and throw it into a set? If we did, we would get back a set called the
universal set, which we denote 𝒰:

𝒰 = { x | x exists }

Absolutely everything would belong to this set: we’d have 1 ∈ 𝒰, ℕ ∈ 𝒰, CS103 ∈ 𝒰, whimsy ∈ 𝒰, etc.
In fact, we'd even have 𝒰 ∈ 𝒰, which is strange but not immediately a problem.

Unfortunately, the set 𝒰 doesn't actually exist, as its existence would break mathematics.

i. Prove that if A and B are arbitrary sets where A ⊆ B, then |A| ≤ |B|.

Look at the online Guide to Cantor’s Theorem. Formally speaking, if you want to prove that |A| ≤ |B|, what
do you need to prove? Your answer should involve defining some sort of function between A and B and
proving that function has some specific property or properties.
ii. Using your result from (i), prove that if 𝒰 exists, then |℘(𝒰)| ≤ |𝒰|.

iii. The Cantor-Bernstein-Schroeder Theorem says that if A and B are sets such that |A| ≤ |B| and
|B| ≤ |A|, then |A| = |B|. Using the Cantor-Bernstein-Schroeder Theorem and the formal definitions
of the different cardinality relations, prove that if A and B are sets where |A| ≤ |B|, then |B| ≮ |A|.

In this proof you’re showing that the ≤ and < relations involving set cardinality work like the ≤ and < rela-
tions over regular numbers. Since the goal of the proof is to show that these cardinality relations work like
regular inequality symbols, this result isn’t “obvious” and you’ll need to use formal definitions.
Be careful not to use relations we haven’t defined. For example, we know that |A| < |B| means because we
have a definition for it in terms of bijections and injections. We don’t, however, have a definition of what
|A| > |B| means, so you should not use that notation in your solution (after all, we don’t know what it
means!) In particular, make sure not to assume that the negation of |A| ≤ |B| is |A| > |B|, since we don’t
have any reason to believe this.
iv. Using your results from parts (i), (ii), and (iii) of this problem, prove that 𝒰 does not exist.

The result you've proven shows that there is a collection of objects (the collection of everything that ex-
ists) that cannot be put into a set (whoa‼). When this was discovered at the start of the twentieth century,
it caused quite a stir in the mathematical world and led to a reexamination of logical reasoning itself and a
more formal definition of what objects can and cannot be gathered into a set. If you're curious to learn
more about what came out of that, take Math 161 (Set Theory) or Phil 159 (Non-Classical Logic).

4 / 9

Problem Five: Avoiding Sampling Bias with Independent Sets
An independent set in a graph G = (V, E) is a set I ⊆ V with the following property:

∀u ∈ I. ∀v ∈ I. {u, v} ∉ E.

This question explores independent sets and their properties.

i. Explain what an independent set is in plain English and without making reference to first-order
logic. No justification is necessary.

You may want to draw some pictures of graphs to see what independent sets look like. Don’t just come up
with a literal translation of the first-order logic formula above; see if you can find a simple explanation.

ii. Download the starter files for Problem Set Four from the course website, extract them some-
where convenient, then open the file GraphTheory.cpp and implement a function

bool isIndependentSet(Graph G, std::set<Node> I)

that takes as input a graph G and a set I, then returns whether I is an independent set in G. The
definition of the Graph type is provided in GraphTheory.h.

Our provided starter code contains logic that, given a graph G, finds the largest independent set in
G by making a lot of repeated calls to isIndependentSet. You might want to look over some of
the sample graphs to get a feel for what large independent sets look like.

You want to conduct a poll for an election and would like to survey people where no two people in the
group know each other so that you can get a good representative sample of the population. Ideally, you’d
find a large group of mutual strangers so that your poll has good statistical power and avoids sampling
bias, a weakness of a poll in which the sampled population isn’t representative of the larger population.

iii. Explain how to model this problem as looking for a large independent set in a certain graph. What
would the nodes in your graph be? What would the edges be? And why would an independent set
have the properties you want? No formal proof is necessary, but do justify your answer.

You don’t need to tell us how to actually find that independent set. That’s a question for another day…

A vertex cover in a graph G = (V, E) is a set C ⊆ V with the following property:

∀x ∈ V. ∀y ∈ V. ({x, y} ∈ E → x ∈ C ∨ y ∈ C).

That’s a bit of a mouthful, but this definition isn’t as tough as it seems.

iv. Translate the definition of a vertex cover into plain English, similarly to what you did in part (i).

v. Implement a function

bool isVertexCover(Graph G, std::set<Node> C)

that takes as input a graph G and a set C, then returns whether C is a vertex cover of G. The defi-
nition of the Graph type is provided in GraphTheory.h.

Our provided starter code contains logic that, given a graph G, finds the smallest vertex cover in G
by making a lot of repeated calls to isVertexCover. You might want to look over some of the
sample graphs to get a feel for what small vertex covers look like.

There’s a close connection between independent sets and vertex covers.

vi. Let G = (V, E) be a graph and C be a vertex cover of G. Prove that V – C is an independent set of G.

Be sure to use the formal definitions of the relevant terms here. It’s a lot easier to see what’s going on here if
you draw out some sample graphs, along with sample vertex covers and independent sets.

5 / 9

Problem Six: Symmetries, Permutations, and Automorphisms
One of the more beautiful concepts in mathematics is symmetry. Chances are that you have some intuitive
conception of what “symmetry” means, and not just in the binary relation sense. For example, the letter
M looks like itself when you look at it in a mirror, and the number 8 looks like itself if you flip it horizon-
tally or rotate it 180°.

Now that we’re studying graphs, we can ask what it means for a graph to be symmetric. For example, con-
sider the graph of the {5 / 2} star shown below. This graph has many symmetries – if you flip it horizon-
tally, or rotate it 72°, the resulting graph looks identical. But this notion of “looks identical” appeals to our
human visual system, which, as you’ve probably experienced, is easily tricked. Is there a way to come up
with a more rigorous definition of “symmetry?”

Let’s begin by labeling the nodes of this graph in whatever way we’d like. For convenience, we’ll use the
numbers 0, 1, 2, 3, and 4, following our star-drawing convention. Now, take the graph shown below and
rotate it one fifth of a revolution clockwise, as shown here:

If you’ll notice, this operation on the graph corresponds to finding a permutation of the labels on the
nodes. Specifically, the node 0 ended up where the node 1 used to be, the node 1 ended up where the
node 2 used to be, etc. And hey! We have a way of describing transformations like that.

i. Describe the permutation that the above rotation corresponds to using two-line notation. No justi-
fication is necessary.

Similarly, let’s imagine that we mirror the graph horizontally, as shown here:

We can similarly think of this as a permutation. For example, node 1 maps to where node 3 used to be.

ii. Describe the permutation that the above mirroring corresponds to using two-line notation. No jus-
tification is necessary.

(Continued on the next page…)

6 / 9

There are a number of other symmetries of this graph, and each one of them corresponds to a permuta-
tion of the nodes. However, not all node permutations correspond to symmetries. For example, imagine
that we permute the nodes as shown here:

Notice that, in the original graph, nodes 0 and 2 were adjacent, but after permuting the nodes they’re no
longer adjacent to one another. (Remember that adjacent means “directly linked by an edge;” contrast this
with connected, which has a different meaning.) Similarly, in the original graph, nodes 0 and 1 were not
adjacent, but after applying the permutation they now are.

At this point, we’ve seen some positive examples of cases where we can use permutations to model sym-
metries, along with a negative example of where we can’t use permutations to model symmetries. The
question is, what was special about those original permutations? It’s that they have the following property:
those permutations keep adjacent nodes adjacent and keep non-adjacent nodes non-adjacent.

Formally speaking, let G = (V, E) be a graph. A permutation σ of the nodes of V is called an automor-
phism if the following is true about σ:

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E ↔ {σ(u), σ(v)} ∈ E).

The mathematical term “automorphism” (“self shape”) might seem really scary here, but it’s just a fancy
way of pinning down what we’ve been describing with the term “symmetry.” Restating the above in plain
English, a permutation is an automorphism of G if

• any two nodes that are adjacent in G stay adjacent after applying σ, and

• any two nodes that aren’t adjacent in G stay nonadjacent after applying σ.

The permutations that you described in parts (i) and (ii) are automorphisms, while the permutation shown
above on this page isn’t. The rest of this question explores properties of automorphisms.

iii. How many automorphisms does the graph of {5 / 2} have? Briefly describe what they are. No for-
mal proof is needed.

Use your intuition behind what automorphisms are designed to formalize.
iv. Consider the graph shown below. It has two automorphisms. What are they? Express your answer

using two-line notation.

A graph is just a pair of a set of nodes and a set of edges. We can draw a graph G = (V, E) in two-dimen -
sional space as a collection of circles and lines in lots of different ways. Sometimes, those drawings make it
really easy to find symmetries. Sometimes, those drawings make it really hard to find symmetries.
To round out our discussion of automorphisms, we’d like you to prove one nice, formal result about them.

v. Let G = (V, E) be a graph and let σ and τ be two automorphisms of G. Prove that τ ∘ σ is also an
automorphism of G.

Write out the definition of an automorphism and make a list of what you’ll need to show.

7 / 9

Problem Seven: Bipartite Graphs
There are a few famous families of graphs that come up over and over again. One of the most important
types of graphs in computer science is the bipartite graph, which is the focus of this problem.

Let’s begin with a formal definition of bipartite graphs. An undirected graph G = (V, E) is called bipartite
if there exist two sets V₁ and V₂ such that

• every node v ∈ V belongs to exactly one of V₁ and V₂, and

• every edge e ∈ E has one endpoint in V₁ and the other in V₂.

The sets V₁ and V₂ here are called bipartite classes of G. To help you get a better sense for why bipartite
graphs are important and where they show up, let’s work through a couple of examples.

i. Consider a graph where each node represents a square on a chessboard and where there’s an edge
between any pair of squares that are immediately adjacent in one of the four cardinal directions
(up, down, left, and right). Explain why this is a bipartite graph by telling us what the bipartite
classes are and briefly explaining why all the edges have one endpoint in each bipartite class.

Draw lots of pictures!

ii. Consider a graph where each node represents a person at a company and there’s an edge between
any person and their boss. (Since edges are undirected, that also means that there’s an edge from
each person to all the people who report to them). You can assume everyone has a single boss, ex-
cept for people who are in charge of a company, who have no bosses at all. Explain why this is a
bipartite graph, along the lines of what you did in part (i).

Draw lots of pictures!

Bipartite graphs have many interesting properties. One of the most fundamental is this one:

Theorem: An undirected graph G is bipartite if and only if it contains no cycles of odd length.

The forward direction of this implication has a nice intuition.

iii. Explain, intuitively, why if G is bipartite, then it has no cycles of odd length. Specifically, give us a
brief, informal explanation as to why every cycle in G has to have even length.

The reverse direction of this implication – that if G has no cycles of odd length, then G is bipartite – re-
quires a different sort of argument.

Let’s pick some arbitrary graph G = (V, E) that has no cycles of odd length. For simplicity’s sake, we’ll as-
sume that G has just one connected component. If G has two or more connected components, we can es-
sentially treat each one of them as independent graphs. (Do you see why?)

Now, choose any node v ∈ V. Using node v as an “anchor point,” we can define two sets V₁ and V₂ that
we’ll need for the remainder of this argument:

 V₁ = { x ∈ V | there is an odd-length path from v to x }

 V₂ = { x ∈ V | there is an even-length path from v to x }

This turns out to be a really useful way to group the nodes of G.

iv. Given the choices of G and v from above, prove that V₁ and V₂ have no nodes in common.

Remember that there might be multiple different paths of different lengths from v to some other node x, so
be careful not to talk about “the” path between v and x. Also note that these do not have to be simple paths.

v. Using your result from part (iv), prove that G is bipartite.

The most common mistake on this problem is to not address all the parts of the definition of a bipartite
graph. So start off by writing down a list of what you need to prove, then address each part in turn.

8 / 9

Problem Eight: Detecting Fake Networks
Social networking sites like Facebook and Twitter are great places to get a pulse on what other people are
thinking, to learn about what’s going on in the world, and to decide what products and services to buy. In
many ways, this has been wonderful. But to add another page to the book of “This is Why We Can’t Have
Nice Things,” this shift toward social media has led to some problems. Unscrupulous actors (advertisers,
trolls, nation states, etc.) have swayed opinion by creating fake social media accounts and posting unpopu-
lar or fringe views – whether it’s that Product X can simultaneously cure cancer and make you rich or that
Candidate Y is a Really Swell Fella – as though they were authentic expressions of support by real people.

Let’s imagine that you’re working for the next social media giant – which you or your fellow CS103ers
may end up doing! – and you want to put an end to these fake accounts. How could you figure out who’s
real and who isn’t? It turns out that graph theory has a pretty rich set of tools to do just this.

i. Think of any reasonably-sized group of (real) people. This gives rise to a graph: each person is a
node, and each edge represents a pair of people who regularly interact with one another. Explain
why it would be extremely unlikely for that graph to be bipartite. No proof is necessary.

The popular company Social Media Helper (SMH) has a product called Super Ethical Opportunity (SEO)
that they offer to their customers. If you sign up for SEO, for a small fee, SMH will create a brand new
social media account for you. SMH will then create an additional 100,000 brand new social media ac-
counts to LikeFollowFriendSubscribe™ your new account, making it look as though you’re really popu-
lar. After all, how many people can say they have 100,000 LikeFollowFriendSubscribers™? Aside from
LikeFollowFriendSubscribing™ your account, those new accounts just sit there doing nothing. They just
exist to boost your apparent popularity. (Of course, nothing like this c ould ever happen in real life .)

ii. Explain why the social network formed from SMH’s fake accounts, plus the accounts they’re Like-
FollowFriendSubscribing™, must be a bipartite graph. No proof is necessary.

It turns out that it’s computationally quite easy to check if a particular graph is bipartite and to find large
bipartite clusters within a graph. This means that if you find yourself working at a social media behemoth,
you could check to see if you have large, connected, bipartite subgraphs of your social network. The ac-
counts in those subgraphs might be worth looking into. 😃

iii. There’s always a cat-and-mouse game between people offering products like SEO and the technol-
ogists working at social networks trying to catch them. Describe a technique that SMH could use
to prevent the graph of their fake accounts and their customers’ accounts from being bipartite.

The analysis here – just looking for bipartite clusters – is extremely simple, and yet you’d be amazed at
just how effective it is at spotting fake networks. We first heard about it from a blogger who used it to find
fake advertising networks on Twitter.

If you’d like to learn more about real social networks, their properties, and the sorts of analyses we can
perform on them, take CS224W. To learn how to check if a graph is bipartite, and to see how you’d find
large bipartite clusters in a graph, take CS161. For more information on the ethical responsibilities of run-
ning a massive social network, take CS181.

Problem Nine: Chromatic and Independence Numbers
Recall that if G is a graph, then χ(G) represents the chromatic number of G, the minimum number of
colors needed to paint each node of G so no two adjacent nodes of G are the same color. The indepen-
dence number of a graph, denoted α(G), is the size of the largest independent set in G.

Let n be an arbitrary positive natural number. Prove that if G is an arbitrary undirected graph with exactly
n2+1 nodes, then χ(G) ≥ n+1 or α(G) ≥ n+1 (or both).

You should definitely check out the Guide to Proofs on Discrete Structures’ advice for proving P ∨ Q.

https://www.nytimes.com/interactive/2018/01/27/technology/social-media-bots.html
https://www.nytimes.com/interactive/2018/01/27/technology/social-media-bots.html
https://www.nytimes.com/interactive/2018/01/27/technology/social-media-bots.html

9 / 9

On this problem set, we’ve included three optional fun problems you can play around with. You’re wel-
come to play around with any number of them, but please submit answers to at most one of these prob-
lems with your problem set. We, unfortunately, don’t have TA bandwidth to grade both of them. If you
submit solutions to more than one of them, we’ll choose one to grade arbitrarily.

Optional Fun Problem One: Hugs All Around! (Extra Credit)
There's a party with 137 attendees. Each person is either honest, meaning that they always tell the truth,
or mischievous, meaning that they never tell the truth. After everything winds down, everyone is asked
how many honest people they hugged at the party. Surprisingly, each of the numbers 0, 1, 2, 3..., and 136
was given as an answer exactly once.

How many honest people were at the party? Prove that your answer is correct and that no other answer
could be correct.

Optional Fun Problem Two: How Many Functions Are There? (Extra Credit)
If A and B are sets, we can define the set BA to be the set of all functions from A to B. Formally speaking:

BA = { f | f : A → B }
Prove that |ℕ| < |ℕℕ|. This shows that ℵ₀ < ℵ₀ℵ₀. Isn’t infinity weird?

Optional Fun Problem Three: Chemical Automorphisms
Below is a graph of the molecular structure of octomethylcyclotetrasiloxane. How many automorphisms
does this graph have? Justify your answer, but no formal proof is required.

